Fundamentals Course

Basic Corrosion

Fundamental introduction and theory behind the corrosion process

Presented By: Heather Groll

What is Corrosion?

CORROSION

THE DETERIORATION OF A MATERIAL, USUALLY A METAL, DUE TO A REACTION WITH ITS ENVIRONMENT

OR

THE TENDENCY OF A REFINED METAL TO RETURN TO ITS NATURAL STATE AS AN ORE

What is Corrosion?

What is Corrosion?

Steel

ł

Appalachian Underground Corrosion Short Course

THE DETERIORATION OF A MATERIAL, DUE TO A REACTION WITH ITS ENVIRONMENT

Types of Corrosion

Naturally Occurring Corrosion

- Dissimilar metals
- Dissimilar surface
- Dissimilar Soils
- Differential Aeration
- Cinders
- Stress
- Graphitization
- Microbiological Influenced Corrosion

Stray Current Corrosion: Man-Made and Natural

- Dynamic Stray Current
- Steady State Stray Current

What is a Corrosion Cell?

There are many different causes for corrosion. But for the pipelines that we work on, we are going to be a little more specific about certain types of corrosion. Corrosion cannot be present without these **four things**;

ELECTROLYTE ANODE CATHODE METALLIC PATH

Take one of the four away and corrosion will be mitigated.

Defining an Anode and Cathode

Defining an Anode and Cathode

Defining an Anode and Cathode

Galvanic Series: Defining an Anode and Cathode

Active (More Electro-Negative)

- High Potential Magnesium (-1.75 v)
- Magnesium Alloy (-1.5 v)
- Zinc (-1.1 v)
- Aluminum Alloys (-1.05 v)
- Clean Carbon Steel (-0.5 to -0.8 v)
- Rusted Carbon Steel (-0.2 to -0.8 v)
- Cast/Ductile Steel (-0.5 v)
- Lead (-0.5 v)
- Steel in Concrete (-0.2 v)
- Copper (-0.2 v)
- High Silicon Iron (-0.2 v)
- Gold (+0.2V)
- Graphite, Carbon (+0.3v)

Noble (More Electro-Positive)

* Potentials with respect to saturated Cu-CuSO₄ Electrode

Dissimilar Metal Corrosion

Defining an Anode and Cathode

Active (More Electro-Negative)

- High Potential Magnesium (-1.75 v)
- Magnesium Alloy (-1.5 v)
- Zinc (-1.1 v)
- Aluminum Alloys (-1.05 v)
- Clean Carbon Steel (-0.5 to -0.8 v)
- Rusted Carbon Steel (-0.2 to -0.8 v)
- Cast/Ductile Steel (-0.5 v)
- Lead (-0.5 v)
- Steel in Concrete (-0.2 v)
- Copper (-0.2 v)
- High Silicon Iron (-0.2 v)
- Gold (+0.2V)
- Graphite, Carbon (+0.3v)

Noble (More Electro-Positive)

Appalachian Underground Corrosion Short Course

*Anode is more electro-negative than the cathode *Cathode is more electro-positive than the anode

Dissimilar Metal Corrosion

Steel Gas Line and Copper Water Line

Active (More Negative)

- High Potential Magnesium (-1.75 v)
- Magnesium Alloy (-1.5 v)
- Zinc (-1.1 v)
- Aluminum Alloys (-1.05 v)
- Clean Carbon Steel (-0.5 to -0.8 v)
- Rusted Carbon Steel (-0.2 to -0.8 v)
- Cast/Ductile Steel (-0.5 v)
- Lead (-0.5 v)
- Steel in Concrete (-0.2 v)
- **Copper** (-0.2 v)
- High Silicon Iron (-0.2 v)
- Gold (+0.2V)
- Graphite, Carbon (+0.3v)

Noble (More Positive)

Dissimilar Metal Corrosion

Brass Stop in a Steel Line

Active (More Negative)

- High Potential Magnesium (-1.75 v)
- Magnesium Alloy (-1.5 v)
- Zinc (-1.1 v)
- Aluminum Alloys (-1.05 v)
- Clean Carbon Steel (-0.5 to -0.8 v)
- Rusted Carbon Steel (-0.2 to -0.8 v)
- Cast/Ductile Steel (-0.5 v)
- Lead (-0.5 v)
- Steel in Concrete (-0.2 v)
- Brass (-0.2 v)
- Copper
- High Silicon Iron (-0.2 v)
- Gold (+0.2V)
- Graphite, Carbon (+0.3v)

Noble (More Positive)

Corrosion caused by Dissimilarity of Surface Conditions

Corrosion caused by Dissimilarity of Surface Conditions

New-Old Pipe Corrosion Cell

Corrosion caused by Mixture of Different Soils

Corrosion caused by Mixture of Different Soils

A= Anodic Areas C= Cathodic Areas

Corrosion caused by Differential Aeration of Soil

Corrosion due to cinders

Physical contact between Pipe and Cinders

Stress Corrosion

Stress Corrosion

PROPERTY AND AND AND ADDRESS OF A DAMAGE AND ADDRESS AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS

Graphitization

Can also lead to inner granular cracking (separation between the grains)

Appalachian Underground Corrosion Short Course

Grey blotchy areas

Microbiologically Influenced Corrosion (MIC)

Identified by:

- Metal being covered with a white pasty material; turns light brown when exposed to the air
- Black, flaky substance

Causes: Old pieces of rope, rags, wood, leaves: organic material in contact with metal

Microbiologically Influenced Corrosion (MIC)

<u>Two types</u>: Acid Producing Bacteria (APB) Sulfur Reducing Bacteria (SRB)

<u>Unique pitting of metal</u>: Step wise pitting Smooth "Thumb print" pitting Worm hole pitting

The bacteria does not eat the pipe, but rather their waste by products, when mixed with water can create acids. Which dissolve the metal.

Microbiologically Influenced Corrosion (MIC)

- Can occur internally and externally.
- Can be mitigated internally, by use of chemical inhibitors, added to the gas stream, or by removing the water from the system.
- Can be mitigated externally by certain types of coatings, or with enhanced cathodic protection, pipe surface potentials over 1.5 volts.

Types of Corrosion

Naturally Occurring Corrosion

- Dissimilar metals
- Dissimilar surface
- Dissimilar Soils
- Differential Aeration
- Cinders
- Stress
- Graphitization
- Microbiological Influenced Corrosion

Stray Current Corrosion: Man-Made and Natural

- Dynamic Stray Current
- Steady State Stray Current

Types of Corrosion

Stray Current Corrosion: Man-Made and Natural

Dynamic Stray Current

- Electrified railroads/Transit systems
- Underground mine railroads
- High Voltage AC Transmission Lines
- Telluric Currents

Steady State Stray Current

- Impressed Current Cathodic Protection
- High Voltage DC Transmission Lines

1 Ampere removes 20 pounds of iron per year, from structure

Stray Current Corrosion

<u>Alternating current</u>, is mainly a safety issue. AC can be induced from overhead high voltage power lines. A measured voltage over 15 volts AC, must be mitigated. Can be measured by setting meter on AC volts, and taking a pipe to soil reading.

<u>Direct current</u>, is a large concern to the corrosion person. Due to the fact that 1 ampere leaving a steel structure, removes 20 pounds of iron per year. DC stray currents can be a rather large amount. There is two types of DC stray current, **static** or steady state and **dynamic** or fluctuating current.

Example: 2 amps per year 2amps X 20 pounds = 40 pounds lost Times 3 years = 120 pounds of lost iron 6 inch pipe weights 18.974 pounds per foot

Stray Current from DC Transit System Dynamic Stray Current

Stray Current from Underground Mining Operation

Dynamic Stray Current

Stray Current from Impressed Current System Static Stray Current

Stray Current from High Voltage DC Transmission Lines

Static Stray Current

Telluric Currents

Factors Affecting the Rate of Corrosion

Soil Resistivity

Anode/Cathode Relationship

Potential Difference between Anode/Cathode

Polarization

Soil Resistivity

Below 500 ohm-cm 500 to 1000 ohm-cm 1000 to 2000 ohm-cm 2000 to 10,000 ohm-cm 10,000 ohm-cm and above Very Corrosive Corrosive Moderate Corrosive Mildly corrosive Progressively less Corrosive

Anode to Cathode Ratio

Large cathode to small anode, the rate of corrosion at the Anode is much more severe. Because the area at which to Discharge current is concentrated, to a smaller area.

Small Anode + Large Cathode = intense corrosion

Large anode to small cathode, the rate of corrosion at the anode is must less severe. Because there is a larger surface area from which the current will discharge.

Large Anode + Small Cathode = less intense corrosion

Potential Difference between the Anode and Cathode

Practical Galvanic Series

Material	Potential*
High Potential Magnesium	-1.75
Magnesium Alloy	-1.50
Zinc	-1.10
Aluminum Alloy	-1.05
Clean Carbon Steel	-0.50 to -0.80
Rusted Carbon Steel	-0.20 to -0.50
Cast/Ductile Steel	-0.50
Lead	-0.50
Steel in Concrete	-0.20
Copper	-0.20
High Silicon Iron	-0.20
Carbon, Graphite	+0.30

Passive or Noble End

* Potentials with respect to saturated Cu-CuSO₄ Electrode

Polarization

High Potential MagnesiumP/S-1.75 VoltsClean Carbon SteelP/S-0.50 to -0.80 Volts

Heather Groll Nisource – Technical Trainer hgroll@nisource.com

9 Rules to remember in corrosion work:

- 1. The hardest problem to solve is the one that doesn't exist.
- 2. Don't take for granted the work done before you, was correct.
- 3. <u>Never</u> criticize the work done before you came aboard. (They had a reason, right or wrong.)
- 4. Always start with the simplest fix.
- 5. If one thing doesn't work try something else.
- 6. Don't assume the way you were taught is the right way.
- 7. Whatever works for you is the way you should work. (Note: I didn't say it's the <u>best</u> way.)
- 8. Don't dismiss a fresh idea.
- 9. Use common sense.

N.A.C.E. Certified Corrosion Technician Bertman J. Smith